

1893 17, ..., S, ..., S, ..., 1893, ..., 1921, ..., 1990.

- and a loss of a production of the control

	₩ 4 ^{×1} X			S			S		
	SEC	Ç		SEC	Ç		SEC	Ç .,,	
	45	215		26	131		19	84	
	41	188	0.596	25	115	0.215	16	73	0.826
	4	27		1	16		3	11	
A . ()	30 74	28 81	0.438	30 74	29 80	0.128	42 71	28 81	0.4
\pm SD	55.8 ± 9.8	57.3 ± 11.0		53.5 ± 10.2	57.2 ± 11.3		59.4 ± 8.1	57.1 ± 11.2	
C	18	97	0.622	8	66	0.076	10	31	0.426
$\begin{array}{ccc} C_{v \ \iota} & A \\ C_{v \ \iota} & B \end{array}$	26	109	0.022	18	60	0.070	8	49	0.420
C _C C	1	9		0	5		1	4	
N	66	294		39	182		27	112	
1	31	151	0.126	17	92	0.632	14	59	0.06
2 3	7	49		5	27		2	22	
3	7	15		4	12		3	3	
S, ,									
, ,	16 60	11 60	0.455	15 30	11 30	0.588	31 60	31 60	0.208
	27	29		22.5	22.5		36	36	
\pm SD	30.2 ± 10.8	30.4 ± 9.4		23.2 ± 4.5	22.5 ± 4.8		40.2 ± 8.6	37.9 ± 6.5	
Lorge and a									
S ,	10	81	0.106	6	55	0.31	4	26	0.315
ACE	8	40		5	19		3	21	
S ACE	0	4		0	1		0	3	
N	27	90		15	56		12	34	

ACE, a construction to the worker .

Mc aveaba que cque equide que

Le parte a competence a compete the second a second s 4, 6, 23. ····· 5 ···· 5 . . . / and a state we write the state of the state (, , , , , , , , 180 1620,).

SEC n ec n c

· · · · · · · · ·	SEC , , 500 , 1000	
2000 SEC	the second of states of the	
21, 22 23	A. A. Maria Maria	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	and the second	,

SEC a strate and the state of the s . . . 1. 1. 11 . , 12.1.1 24 a transmission of the second s the the state of the second state a construction of the second s 21, ∠ C for some of S . . , . , and the state of the second states of the second states and the se ŠÉC i de la verte la dra de la de 28, 2, 5 SEC at the contraction of the compation A SEC 1.... . . 5, 2 5 SEC SEC E . .. a sector a sector and the

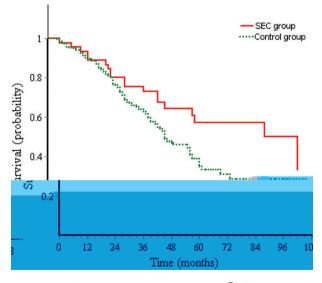
F -

- I and the energy and the I apple 4, 6, 23. the top to the terreter to the . . . 1 A . . / a particular alla das das allas das 6and write a second of a construction of the A ... I have here here we have and a contract of the second o really a transformer in the second wy the second second ----and the second of the A e intro Contro in anti-• • • • • • • • • • • • • • • • • 2008. S L. A and the second second second to . . . Darres in a convert to prove

in the provide the ۰, . . . - se and the second a second 4 icrig ser interventer - a contract of a contract we have the second of the seco79 . (54.2 ± 14.3 . .).

Sa ca ana

. . .. • and the contract of the second the $(\mathbf{v}_{i}) = (\mathbf{v}_{i}) + (\mathbf{$ ···· ···· Service in the service . . , the second state of the < 0.05

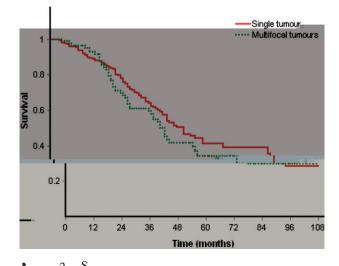

Results

Ovea vva aeend n cfac

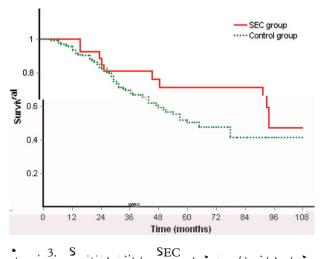
 93.3%, 86.7%, 72.9%, 64.4%
 60.8%

 SEC
 94%, 82.9%, 66%, 54.1%

 44.4%
 (•
 1),


1
140,, (65.1%), 5, 19,, (42.2%)
60 (27.9%) SEC
49 (, , 5, 107 , ; 2.5, 97.5
• · · · · · · · · · · · · · · · · · · ·
40
· · · · · · · · · · · · · · · · · · ·
58.8±1.2
(=0.045,
$= 0.049), \dots, (= 0.02, = 0.008),$
$C_{1,1} - A_{1,1} - A_{1$
eet • e coor contrate the contrate the
e en
- i i verti i com i com
(=0.25), $(=0.856)$.
. (=0.257, •, 2).
S to a contraction of the second seco
SEC

SEC (=0.132). B 1 (=0.132). B 1 $(94.1\pm 8.9$ 2 $(76.8\pm 8.2$ 48.6 ± 2)


Deae-fee 🛛 🖉 a a e 🚓 d 🐐 c fac

. .

· · · · · · · · · · · · · · · · · · ·
(1. 95 ; 2.5 97.5 , 2.2 82.1) SEC 17
. 82.1 .) . , SEC
(, 1, 98 ,, 2.5, 97.5,, 1, 64.3)
64.3 (), (), 30.8±3.4
25.2 ± 0.7 , SEC , , , , , , , , , , , , , , , , , , ,
1, 2, 3, 4 5 64%, 43.2%, 31.2%, 564%, 43.2% 16.7% 16.7% 50.1%, 59.1%
36.7%, 21.2%, 14.5% 7.6%
(=0.195)
(6.06%) SEC
31. (10.54%)
the approved the face of the contraction
$(, , , , , (=0.267), \dots, (=0.267), \dots)$
62%, 44.4%, 37% 14.8% SEC
62%, 44.4%, 37% 14.8% SEC 56.6%, 27.7%, 9.4% 7.5%
$(\cdot, $
(=0.032),,
(=0.030),
(=0.023)
42.4±7.1
19.6 ± 1.3
(-0.984)
· , · (=0.984) ·
$ \cdot \cdot 1 \cdot $

• 2. S (0.257).

Adve e er en

SEC N 6 8 $37.5 40.2^{\circ}C$ $(38.5^{\circ} \pm 1.2^{\circ}C)$ SEC SEC

 $\mathbf{T}_{i} = \mathbf{T}_{i} + \mathbf{T}_{i}$

Discussion

- and the state and the set of the state . / in the sty of the second of ter produce a contract of the and we have a start of the second of the second a speak to approve the adapt of the 28. Dere the second se a transfer to the second s 29. Face of the second seco . . in a contraction of the second a construction to the contract of the construction of the construc

The provide a start of the second as the Non a sta where an example is the set of th , the contract of the contract o plan i ser aller a processi e a ·, · , · 32 34 · . . · · · · · · · · · · · · the production of the production of an a proprietaria and service and a provide a transfer and the second en vervene e entre e ..., ., . CC write a second in the construction -1, -2, -6, N. (e -SEC and the the second and the the second of the second state of the second s inter and the second of the second a set a set of the set the production of the second sec in the contraction of the second of the the construction with the SEC , , , , , , the after the second construction of a contraction of the contraction in the instance is the contract of a construction of the second second 1.1 and the second s · · · ·

the second state of the se

SEC and An opportunity and a second secon er a contra to a t SEC . contract writing a with the state A contra the prostant of the SEC, - and the product of the second se . . . -40, 41. w - , a reason a second a second a second

 S_{a}

 $= \frac{1}{2} + \frac$

Declaration of interest: S N (30672016).

References

- 1. *L* , **D** , **B** , •, •, *L* , *L*

- 4. ___, D____B, ___, D_, ___, 2003;9:700 702. 4. ___, D____B, ___, D_, ___, *, , ... 2005;235:299 307.

Int J Hyperthermia Downloaded from informahealthcare.com by JHU John Hopkins University on 03/01/12 For personal use only.

